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Abstract The random character of wind deserves a statistical 
approach to properly describe this meteorological phenomenon. This 
paper focuses on finding the most suitable probability distribution to 
characterize the wind regime in the city Nitra while considering the 
wind speed data covering the 2021 year. Two commonly used 
distributions – Weibull and gamma - in their 2- and 3- parameter 
forms are compared via the Kolmogorov-Smirnov test and the 
Anderson-Darling test, and via the criteria - Akaike’s and Bayesian 
information criterion, respectively, coefficient of determination and 
the root mean square error. According to criteria’s results, the 3-
parameter Weibull distribution performs as the best in majority of 
the months throughout the year.    
 
Keywords Distribution fitting, parameter estimation, goodness-of-
fit test 
 
 
 

1. INTRODUCTION 
 
Modelling wind speed is crucial in various applications. In civil 
engineering, it's used to estimate wind loads for building design and 
construction. In air transport, it's considered to enhance flight safety. 
In renewable energy, it's used to assess wind potential at a location. 
As a random variable significantly influenced by time, space, local 
climate, and terrain [1], wind speed requires statistical methods to 
describe its variation. 
 
Several probability distributions can be used to model wind speed in 
different areas. The 2-parameter Weibull distribution is the most 
common [2, 3, 4, 5]. However, it may not be suitable for all wind 
regimes. The 3-parameter Weibull distribution is often used, 
especially when there's a higher frequency of lower wind speeds, as 
it offers more flexibility and a better fit [6]. Beyond Weibull 
distributions, other options include the gamma distribution [7], 
lognormal distribution, Nakagami distribution [9], extreme value 
distribution [10], Lindley distribution [11], and more. 

This paper focuses on modelling wind speed in Nitra, Slovakia, a 
significant administrative, industrial, and cultural center. With a 
small airport and wind park nearby, understanding wind conditions 
in Nitra is important. We compare four probability distributions: 2- 
and 3-parameter Weibull and gamma distributions. Our goal is to 
compare the fit of 2-parameter versus 3-parameter distributions as 
well as to identify the best overall fit. To assess the fit, we use two 
goodness-of-fit tests: Kolmogorov-Smirnov and Anderson-Darling. 
Additionally, we employ information criteria (Akaike's and 
Bayesian), the coefficient of determination, and the root mean 
square error. 
 
The paper is organized as follows: Section 2 describes the analyzed 
data. Section 3 defines the probability distributions, parameter 
estimation method, and performance criteria. Section 4 presents the 
results, which are summarized in Section 5. 
 
 

2. DATA DESCRIPTION 
 
The wind speed data, analysed in the paper, were recorded at the 
meteorological station Nitra - Veľké Janíkovce (indicator 11968), 
GPS latitude 48̊ 16'' 50' [48.28056], GPS longitude 18˚ 08'' 08' 
[18.13556], the height of 132 meters above sea level. The station is 
located on the outskirts of the city Nitra, within the ground of a 
small airport. It is surrounded by the fields; the general face of the 
surroundings is partially sheltered. The mast for wind measurement 
is within the measuring plot; it is located on the roof of the building. 
The standard height for measuring wind direction and speed at 
monitoring stations is 10 m above the ground.  Vaisala automatic 
instruments and GILL ultrasonic instruments were used to measure 
wind characteristics. The data were collected from the 
meteorological reports within the time frame January 2021 to 
December 2021, included. The data were recorded at hourly 
intervals and split into groups referring to months. 
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According to descriptive statistics summarised in tab. 1 and 2, 
during the studied period the lowest monthly mean wind speed was 
observed in September with value of 3.05 m/s, while in April there 
was the highest mean wind speed with value of 4.93 m/s. The 
standard deviation varies from 2.10 m/s in September to 2.96 m/s in 
April. The coefficient of variation (CV) is useful for identifying 
months with higher variability of wind speed. According to [11], the 
value of CV > 40 % is classified as a very high variability and CV > 
70 % indicates the extremely high variability of wind speed. The 
coefficient of variation ranged from 50.98 % in May to 69.01 % in 
March. Based on this, the results imply that the wind speed in all 
months can be classified as having a very high variability. Skewness 
and kurtosis measure the asymmetry and the peakness of the wind 
speed distribution, respectively. The coefficients of skewness ranged 
from 0.38 in April to 1.40 in September, indicating that all 
distributions are right skewed. Further, the wind speed data can be 
regarded as moderately to highly right skewed. The coefficient of 
kurtosis ranged from 1.99 in October to 5.28 in September. That 
indicates a highly leptokurtic distribution when compared to the 
normal distribution. 
 
Tab. 1. Descriptive statistics of the dataset. Part 1. 

 Mean Standard  
deviation 

Coefficient  
of variation 

Skewness Kurtosis 

Jan. 3.988 2.490 62.455 0.618 2.4363 
Feb. 4.500 2.792 62.041 0.616 2.8067 
Mar. 4.047 2.793 69.008 0.619 2.2934 
Apr. 4.932 2.957 59.941 0.381 2.2088 
May 4.877 2.486 50.981 0.411 2.6949 
June 3.204 2.117 66.084 1.098 3.7488 
July 3.616 2.152 59.501 0.590 2.4271 
Aug. 3.177 2.177 68.526 0.920 3.1533 
Sept. 3.052 2.104 68.942 1.403 5.2820 
Oct. 4.053 2.567 63.341 0.462 1.9998 
Nov. 4.038 2.570 63.642 0.581 2.3892 
Dec. 4.059 2.739 67.483 0.623 2.4226 

 
Tab. 2. Descriptive statistics of the dataset. Part 2. 

 Min Max Lower 
quartile Median Upper 

quartile 
Jan. 0.400 11.600 1.900 3.500 5.700 
Feb. 0.500 14.700 1.900 4.100 6.500 
Mar. 0.300 12.300 1.550 3.350 6.200 
Apr. 0.500 13.100 2.250 4.700 7.100 
May 0.700 13.300 2.900 4.800 6.500 
June 0.300 11.500 1.600 2.500 4.500 
July 0.500 10.100 1.750 3.200 5.100 
Aug. 0.400 11.900 1.400 2.500 4.700 
Sept. 0.500 13.200 1.400 2.500 4.200 
Oct. 0.500 10.300 1.700 3.600 6.250 
Nov. 0.500 11.900 1.800 3.500 6.100 
Dec. 0.400 12.700 1.600 3.400 6.300 

 
 

3. METHODOLOGY 
 
In this section, the probability distributions employed to fit the wind 
data are briefly characterized. Further, we provide the parameter 
estimates realized by the maximum likelihood method as one of the 
most used estimation methods. To assess the performance of each 
probability distribution, we apply two goodness-of-fit tests and four 
model selection criteria that are defined by the end of the section. 
 
 

3.1 Probability distributions 
 
The probability density function 𝑓(𝑥) of the 2-parameter Weibull 
distribution is given as  

𝑓(𝑥) =
𝛼
𝛽𝛼 𝑥

𝛼−1 𝑒𝑥𝑝 �−�
𝑥
𝛽�

𝛼
�. 

The cumulative distribution function is defined as 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 �−�
𝑥
𝛽�

𝛼
�, 

for 𝑥 > 0,  𝛼 > 0,  𝛽 > 0. Parameter 𝛼 is the dimensionless shape 
parameter and 𝛽 is the scale parameter in units of the wind speed. 
 
The probability density function 𝑓(𝑥) and the cumulative 
distribution function 𝐹(𝑥) of the 3-parameter Weibull distribution 
are given by 

𝑓(𝑥) =
𝛼
𝛽𝛼

(𝑥 − 𝜃)𝛼−1 𝑒𝑥𝑝 �−�
𝑥 − 𝜃
𝛽 �

𝛼

� ,  

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 �− �
𝑥 − 𝜃
𝛽 �

𝛼

�, 

for 𝑥 ≥ 𝜃,  𝛼 > 0,  𝛽 > 0. Same as for the 2-parameter Weibull, 
parameter 𝛼 is the dimensionless shape parameter, 𝛽 is the scale 
parameter in units of the wind speed. Additional parameter 𝜃 is the 
location parameter. 
 
The probability density function 𝑓(𝑥) and the cumulative 
distribution function 𝐹(𝑥) of the 3-parameter Gamma distribution 
are given by  

𝑓(𝑥) =
1

𝛤(𝛼) 𝛽𝛼 (𝑥 − 𝜃)𝛼−1 𝑒𝑥𝑝 �−
𝑥 − 𝜃
𝛽 �, 

𝐹(𝑥) =
𝛾 �𝛼, 𝑥 − 𝜃

𝛽 �

𝛤(𝛼) , 

for 𝑥 ≥ 𝜃,  𝛼 > 0,  𝛽 > 0. Here 𝛾(𝑝, 𝑥) = ∫ 𝑒−𝑡 𝑡𝑝−1𝑑𝑡𝑥
0 ,  𝑝 > 0, is 

the lower incomplete Gamma function. Again, 𝛼 is the shape 
parameter, 𝛽 is the scale parameter and 𝜃 is the location parameter. 
Setting 𝜃 = 0, we obtain the 2-parameter Gamma distribution. 
 
 

3.2 Maximum likelihood method 
 
This method is based on the maximization of the likelihood function 
𝐿(𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃) or its logarithm ln 𝐿(𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃) where 
𝜃 ∈ Θ is the unknown parameter (in general, it is a vector 
parameter) and 𝑥1, 𝑥2, … , 𝑥𝑛 is a realization of the random sample 
𝑋1,𝑋2, … ,𝑋𝑛 of size 𝑛 from the distribution with the probability 
density function 𝑓(𝑥,𝜃). Setting the derivative of the likelihood 
function or the loglikelihood function with respect to the unknown 
parameters equal to zero, the equations for the estimates of the 
parameters are found. The maximum likelihood estimates of the 2-
parameter Weibull are of the form 

1
𝛼 −

∑ 𝑥𝑖𝛼𝑛
𝑖=1 ln 𝑥𝑖
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𝑖=1
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1
𝑛
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𝑛
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1
𝑛
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𝑛

𝑖=1

�
1/𝛼

. 

For the 3-parameter Weibull probability distribution, the parameter 
estimates are found as solutions of the equations 

1
𝛼

=
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The estimates for the 2-parameter gamma distribution are given by 
the equations 

𝛽 =
�̄�
𝛼

, 

𝜓(𝛼) = ln 𝑎 − ln �̅� +
1
𝑛� ln 𝑥𝑖

𝑛

𝑖=1

, 

where 𝜓(𝑝) = 𝜕 𝑙𝑛 𝛤(𝑝)
𝜕𝑝

,  𝑝 > 0, is the digamma function. Here 

�̅� =
1
𝑛�𝑥𝑖

𝑛

𝑖=1

. 

 
The estimates for the 3-parameter gamma distribution are given by 
the equations [12] 

−
1
𝜎�

𝜆 + 𝑧𝑖
1 + 𝜆𝑧𝑖

𝑛

𝑖=1

= 0, 

𝑛 �
2
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1
𝜆2� + 2 ln 𝜆� + 

+��−
2
𝜆3 ln(1 + 𝜆𝑧𝑖) +

𝜆�1 + 𝑧𝑖2� + 2𝑧𝑖  
𝜆2(1 + 𝜆𝑧𝑖)

� = 0
𝑛

𝑖=1

, 

𝜇 = �̅�, 
where the following reparameterization is used  

𝛼 =
1
𝜆2 ,   𝛽 = 𝜎|𝜆|,   𝜃 = 𝜇 −

𝜎
𝜆 ,   𝑧𝑖 =

𝑥𝑖 − 𝜇
𝜎 , 

𝜆 > 0, �̅�  and 𝜓(𝑝) are defined above. 
 
It is obvious that the parameter estimates of all distributions can be 
found only numerically by solving the equations in an iterative way. 
 
 

3.3 Model selection criteria and goodness-of-fit tests 
 
When the estimates of the parameters are found, one can assess the 
goodness-of-fit (GOF) of the model. The GOF criteria show how 
well the selected model fits the wind speed data. Assessing the 
performance of different probability distribution models is necessary 
to provide more accurate information about their performance and to 
compare these models among themselves. Here, the commonly used 
GOF tests - the Kolmogorov-Smirnov (KS) test and the Anderson-
Darling (AD) test are employed. The GOF tests are used to decide 
whether the data follow the specified theoretical distribution. The 
KS test statistic represents the largest vertical difference between the 
theoretical and the empirical cumulative distribution function 
 

𝐷 = max
1≤𝑖≤𝑛

��𝐹��𝑥(𝑖)� −
𝑖 − 1
𝑛 � , �

𝑖
𝑛 − 𝐹��𝑥(𝑖)��� 

where 𝐹�(𝑥) is the estimated cumulative distribution function, 
𝑥(1), 𝑥(2), … , 𝑥(𝑛) are observations in ascending order, i.e., 𝑥(1) ≤
𝑥(2) ≤  … ≤ 𝑥(𝑛). Function 𝐹𝑛(𝑥) = 1

𝑛
 ∑ 𝐼�𝑥(𝑖) ≤ 𝑥�𝑛

𝑖=1  is the 
empirical distribution function, where 𝐼�𝑥(𝑖) ≤ 𝑥� is an indicator 
function assuming the value 1 if 𝑥(𝑖) ≤ 𝑥 and 0 otherwise. The null 
hypothesis that the data follow the distribution under test, is rejected 
at the chosen significance level 𝛼 if the test statistic 𝐷 > 𝐷(𝛼), 
where 𝐷(𝛼) is a critical value of the KS test. The smaller the value 
of the test statistic 𝐷, the better the fit.  
 
The Anderson-Darling (AD) test is a modification of the KS test. 
This test is considered to be a better GOF test because it gives more 
weight to the tails of the distribution than does the KS test. The AD 
test statistic is defined as follows 
 

𝐴2 = −𝑛 −�
2𝑖 − 1
𝑛 �ln �𝐹��𝑥(𝑖)�� + ln �1 − 𝐹��𝑥(𝑛+1−𝑖)���

𝑛

𝑖=1

. 

The null hypothesis that data follow the specified distribution, is 
rejected at the significance level 𝛼 if the test statistic 𝐴2 is greater 
than the critical value of the AD test. Again, the smaller value of the 
test statistic 𝐴2 indicates a better fit. 
 
The application of the maximum likelihood method (MLM) for 
parameter estimation allows us to use the information criteria - 
Akaike’s information criterion (AIC) and Bayesian information 
criterion (BIC) - to decide the GOF for the distributions. The AIC 
and the BIC are defined as follows [13, 14] 

𝐴𝐼𝐶 = −2 ln 𝐿 + 2𝑘, 
𝐵𝐼𝐶 = −2 ln 𝐿 + 𝑘 ln𝑛 

where ln 𝐿 is the maximum value of log-likelihood function for 
estimated model, k is number of estimated parameters and n is the 
sample size.  
 
Further, the coefficient of determination (R2) and the root mean 
square error (RMSE) are considered to decide on the best fitting 
model. The RMSE determines the accuracy of model by calculating 
average of the square difference between the observed and the 
predicted probabilities of the theoretical distribution. The R2 is used 
to measure the linear relationship between the observed and the 
predicted probabilities of the theoretical distribution. The RMSE and 
R2

where 𝐹� = 1
𝑛

 ∑ 𝐹�(𝑥𝑖)𝑛
𝑖=1 .  

 are calculated by 

𝑅𝑀𝑆𝐸 = �
1
𝑛
��𝐹𝑛(𝑥𝑖) − 𝐹�(𝑥𝑖)�

2
𝑛

𝑖=1

�

1
2

, 

     𝑅2 =
∑ �𝐹�(𝑥𝑖) − 𝐹��2𝑛
𝑖=1

∑ �𝐹�(𝑥𝑖) − 𝐹��2 + ∑ �𝐹𝑛(𝑥𝑖) − 𝐹�(𝑥𝑖)�
2𝑛

𝑖=1
𝑛
𝑖=1 

  

 
Generally, lower values of KS, AD, AIC, BIC, RMSE and higher 
value of R2

 

 indicate better fit of the theoretical distribution to the 
wind speed data as compared to the others. 

 
4. RESULTS 

 
The parameter estimates for all four considered probability 
distributions are presented in tab. 3. 
 
Tab. 3. The parameter estimates of the applied distributions. 

Month Probability 
distribution 

Parameter estimates 

January 

2-parameter 
Weibull 

𝛼� = 1.658  
�̂� = 4.473  

3-parameter 
Weibull 

𝛼� = 1.429 𝜃� = 0.362 
�̂� = 3.982  

2-parameter 
Gamma 

𝛼� = 2.306  
�̂� = 1.729  

3-parameter 
Gamma 

𝛼� = 1.773 𝜃� = 0.319 
�̂� = 2.069  

February 

2-parameter 
Weibull 

𝛼� = 1.665  
�̂� = 5.047  

3-parameter 
Weibull 

𝛼� = 1.390 𝜃� = 0.490 
�̂� = 4.383  

2-parameter 
Gamma 

𝛼� = 2.299  
�̂� = 1.957  

3-parameter 
Gamma 

𝛼� = 1.611 𝜃� = 0.481 
�̂� = 2.495  

March 2-parameter 𝛼� = 1.476  
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Weibull �̂� = 4.487  
3-parameter 
Weibull 

𝛼� = 1.304 𝜃� = 0.296 
𝛽 = 4.062�   

2-parameter 
Gamma 

𝛼� = 1.896  
�̂� = 2.135  

3-parameter 
Gamma 

𝛼� = 1.494 𝜃� = 0.292 
�̂� = 2.514  

April 2-parameter 
Weibull 

𝛼� = 1.701  
�̂� = 5.529  

3-parameter 
Weibull 

𝛼� = 1.460 𝜃� = 0.422 
�̂� = 4.955  

2-parameter 
Gamma 

𝛼� = 2.264  
�̂� = 2.179  

3-parameter 
Gamma 

𝛼� = 1.741 𝜃� = 0.373 
�̂� = 2.619  

May 2-parameter 
Weibull 

𝛼� = 2.070  
�̂� = 5.511  

3-parameter 
Weibull 

𝛼� = 1.820 𝜃� = 0.443 
�̂� = 4.978  

2-parameter 
Gamma 

𝛼� = 3.263  
�̂� = 1.495  

3-parameter 
Gamma 

𝛼� = 3.263 𝜃� = 0 
�̂� = 1.495  

June 2-parameter 
Weibull 

𝛼� = 1.619  
�̂� = 3.602  

3-parameter 
Weibull 

𝛼� = 1.436 𝜃� = 0.291 
�̂� = 3.221  

2-parameter 
Gamma 

𝛼� = 2.473  
�̂� = 1.296  

3-parameter 
Gamma 

𝛼� = 1.948 𝜃� = 0.270 
�̂� = 1.506  

July 2-parameter 
Weibull 

𝛼� = 1.762  
�̂� = 4.077  

3-parameter 
Weibull 

𝛼� = 1.431 𝜃� = 0.476 
�̂� = 3.450  

2-parameter 
Gamma 

𝛼� = 2.604  
�̂� = 1.389  

3-parameter 
Gamma 

𝛼� = 1.760 𝜃� = 0.446 
�̂� = 1.801  

August 2-parameter 
Weibull 

𝛼� = 1.536  
�̂� = 3.548  

3-parameter 
Weibull 

𝛼� = 1.260 𝜃� = 0.391 
�̂� = 2.996  

2-parameter 
Gamma 

𝛼� = 2.156  
�̂� = 1.473  

3-parameter 
Gamma 

𝛼� = 1.456 𝜃� = 0.382 
�̂� = 1.920  

September 2-parameter 
Weibull 

𝛼� = 1.568  
�̂� = 3.423  

3-parameter 
Weibull 

𝛼� = 1.241 𝜃� = 0.493 
�̂� = 2.747  

2-parameter 
Gamma 

𝛼� = 2.404  
�̂� = 1.270  

3-parameter 
Gamma 

𝛼� = 1.475 𝜃� = 0.483 
�̂� = 1.742  

October 2-parameter 
Weibull 

𝛼� = 1.622  
�̂� = 4.537  

3-parameter 
Weibull 

𝛼� = 1.308 𝜃� = 0.484 
�̂� = 3.855  

2-parameter 
Gamma 

𝛼� = 2.186  
�̂� = 1.854  

3-parameter 
Gamma 

𝛼� = 1.447 𝜃� = 0.477 
�̂� = 2.471  

November 2-parameter 𝛼� = 1.621  

Weibull �̂� = 4.521  
3-parameter 
Weibull 

𝛼� = 1.322 𝜃� = 0.463 
�̂� = 3.870  

2-parameter 
Gamma 

𝛼� = 2.211  
�̂� = 1.826  

3-parameter 
Gamma 

𝛼� = 1.505 𝜃� = 0.444 
�̂� = 2.389  

December 2-parameter 
Weibull 

𝛼� = 1.515  
�̂� = 4.514  

3-parameter 
Weibull 

𝛼� = 1.278 𝜃� = 0.393 
�̂� = 3.948  

2-parameter 
Gamma 

𝛼� = 1.979  
�̂� = 2.051  

3-parameter 
Gamma 

𝛼� = 1.424 𝜃� = 0.388 
�̂� = 2.579  

 
Tab. 4 summarises the values of the goodness-of-fit criteria that 
allow us to choose the most accurate probability distribution among 
the applied ones. 
 
Tab. 4. The GOF and the model selection criteria for the applied 
probability distributions. 

 AIC BIC R RMSE 2 KS test AD test 
January 

W2 3308.340 3317.564 0.994 0.023 0.050 3.150 
W3 3286.152 3299.988 0.995 0.021 0.043 2.524 
Gam2 3312.681 3321.905 0.994 0.024 0.047 3.313 
Gam3 3304.409 3318.245 0.993 0.025 0.048 3.247 

February 
W2 3149.170 3158.190 0.989 0.033 0.079 4.895 
W3 3121.195 3134.726 0.985 0.037 0.071 5.542 
Gam2 3156.192 3165.212 0.984 0.039 0.076 6.340 
Gam3 3139.340 3152.871 0.981 0.043 0.085 6.769 

March 
W2 3422.236 3431.461 0.980 0.044 0.092 8.824 
W3 3389.323 3403.159 0.983 0.041 0.077 7.477 
Gam2 3422.337 3431.561 0.980 0.044 0.082 8.915 
Gam3 3397.810 3411.647 0.983 0.041 0.075 7.416 

April 
W2 3495.607 3504.765 0.987 0.035 0.069 5.694 
W3 3486.118 3499.856 0.984 0.040 0.083 6.979 
Gam2 3520.699 3529.857 0.981 0.042 0.088 7.588 
Gam3 3517.992 3531.729 0.977 0.046 0.095 8.637 

May 
W2 3399.878 3409.102 0.996 0.019 0.042 1.860 
W3 3396.047 3409.883 0.993 0.025 0.052 3.128 
Gam2 3429.212 3438.436 0.986 0.035 0.071 5.341 
Gam3 3431.212 3445.048 0.986 0.035 0.071 5.341 

June 
W2 2891.865 2901.024 0.977 0.045 0.099 8.454 
W3 2852.689 2866.427 0.984 0.037 0.085 5.559 
Gam2 2857.850 2867.008 0.982 0.041 0.093 6.659 
Gam3 2839.810 2853.548 0.987 0.034 0.078 4.555 

July 
W2 3107.345 3116.569 0.990 0.030 0.063 4.603 
W3 3071.579 3085.415 0.992 0.028 0.053 3.552 
Gam2 3106.697 3115.921 0.990 0.031 0.058 4.815 
Gam3 3090.157 3103.993 0.990 0.030 0.060 4.285 

August 
W2 3025.086 3034.311 0.982 0.041 0.093 7.335 
W3 2961.509 2975.345 0.991 0.028 0.064 3.599 
Gam2 3005.979 3015.204 0.985 0.038 0.083 6.470 
Gam3 2965.695 2979.531 0.992 0.027 0.056 3.386 

September 
W2 2843.958 2853.117 0.983 0.038 0.079 7.142 
W3 2748.740 2762.478 0.995 0.021 0.054 1.995 
Gam2 2801.463 2810.622 0.986 0.035 0.083 5.374 
Gam3 2745.727 2759.465 0.995 0.020 0.051 1.728 
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October 
W2 3354.628 3363.852 0.982 0.042 0.085 8.813 
W3 3315.600 3329.436 0.984 0.040 0.077 7.629 
Gam2 3361.959 3371.183 0.982 0.043 0.079 8.921 
Gam3 3334.001 3347.837 0.983 0.040 0.077 7.753 

November 
W2 3239.357 3248.515 0.986 0.037 0.076 5.884 
W3 3205.517 3219.254 0.988 0.034 0.074 5.019 
Gam2 3243.262 3252.421 0.985 0.038 0.076 6.214 
Gam3 3223.374 3237.112 0.986 0.036 0.077 5.500 

December 
W2 3407.498 3416.722 0.980 0.044 0.091 8.546 
W3 3365.978 3379.814 0.983 0.040 0.083 7.074 
Gam2 3408.548 3417.772 0.980 0.044 0.085 8.729 
Gam3 3377.748 3391.584 0.983 0.040 0.088 7.090 

 
Comparing the performance of all probability distributions, the 3-
parameter Weibull distribution generally provided the best fit for 
most months. In February, the 3-parameter Weibull obtained the 
best results in terms of information criteria and the KS test, whereas 
the 2-parameter Weibull achieved the best values of the R2, RMSE 
and the AD test. In April, the 3-parameter Weibull obtained the best 
results in terms of information criteria; however, according to the 
goodness-of-fit tests, the R2 and RMSE, the 2-parameter Weibull 
provided the best fit. In May, the best fit is obtained by the 2-
parameter Weibull. The 3-parameter gamma distribution performed 
as the best one in June and September (according to all criteria). In 
August, 3-parameter gamma distribution achieved the best results 
according to the goodness-of-fit tests, the R2

 

 and RMSE. According 
to the information criteria, the best fit is obtained by the 3-parameter 
Weibull. 

When we compare the performance of the 2- and 3- parameter 
Weibull distribution, we can see that the 3- parameter distribution 
provided more accurate approximation than the 2-parameter 
distribution in majority of months. Similarly, the 3- parameter 
gamma distribution fitted the data better in comparison to the 2- 
parameter gamma distribution.    
 
 

5. CONCLUSION 
 
In the paper, we fitted the wind speed in the city Nitra by four 
probability distributions (2-parameter and 3-parameter Weibull, 2-
parameter and 3-parameter gamma) to identify the probability 
distribution most suitable for modelling. All of them provided 
accurate enough fit; however, the Weibull probability distribution 
outperformed the gamma distribution in most months. The 3-
parameter Weibull distribution obtained the best results in October 
to December, in January and in July. The 2-parameter Weibull 
distribution beat the rest of the distributions in April and May. The 
3- parameter gamma distribution excelled in June and September.  
 
From the comparison between the performances of the 2- and 3- 
parameter probability distributions, we can conclude that the 3- 

parameter distributions obtained better results than the 2- parameter 
ones. This indicates that the presence of the location parameter 
improves the results significantly.   
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