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Abstract The aim of this paper is to summarise the mathematical 
basics of the Screw theory and its application in mechanics. The 
paper provides methodology for finding the input-output equation 
for velocities of the parallel mechanism, that allows to obtain the 
velocities of the effector and of the actuated kinematic couples. This 
algorithm is applied to a 3 degrees of freedom planar parallel 3-RTR 
mechanism where we determine the input-output equation for 
velocities and based on this we investigate the singularities of the 
moving platform.     
 
Keywords Distribution fitting, parameter estimation, goodness-of-
fit test 
 
 
 

1. INTRODUCTION 
 
Computational methods in robotics play a significant role, primarily 
due to the constantly increasing complexity of robotic devices, 
requirements for the accuracy and stability of motion control, 
prediction of properties even in the design phase. Such tasks cannot 
be performed without detailed knowledge of the kinematics and 
dynamics of robotic devices, whether with a serial or parallel 
kinematic structure. Several proven approaches are currently used 
for the kinematic and dynamic analysis of mechanisms, such as the 
formulation of motion equations and the description of the 
kinematic structure based on Denavit-Hartenberg notation, using 
Euler angles, etc. Many of these methods have a very good 
application in mechanisms with a serial kinematic structure. On the 
other hand, for mechanisms with a parallel or hybrid structure, we 
are not always able to arrive at a reliable solution with these 
conventional approaches. 
 
One of the methods for solving the kinematics of mechanisms is 
Screw theory. This theory provides mathematical tools for solving 
many tasks - from investigating the mobility of mechanisms, solving 
the direct and inverse problem for velocities, detecting singular 
positions to considering redundant actuators. The singularities 
influence many performances, including the workspace, dexterity, 
stiffness and load capacity of parallel robots. At singular 

configuration, the robot loses control over degrees of freedom. 
Either the robot gains one or more unexpected degrees of freedom 
what causes the degradation of natural stiffness and decrease of the 
load capacity in the direction of the additional degree of freedom, or 
the robot lies at a dead point where it is not able to be controlled. [1] 
In this paper, we focus on investigating the singularities of the 
planar parallel 3-RTR mechanism with asymmetrical position of the 
actuators in the limbs. 
 
The organization of the paper is as follows: in section 2, the basics 
of the Screw theory are summarized. Section 3 presents the 
application of the theory to the mechanics. In section 4, we continue 
in the mechanical applications with differential kinematics of 
parallel mechanisms. Section 5 provides the velocity equation and 
the singularity analysis of the planar parallel 3-RTR mechanism.     
 
 

2. MATHEMATICAL CONCEPT OF SCREW 
THEORY 

 
In this section, we clarify the basic concepts of the Screw theory 
mathematical apparatus. We define the concept of a screw as a dual 
vector, its characteristics, as well as operations with screws.  
 
 

2.1 Screw, line vector, couple 
 
A screw $ is an ordered pair of vectors 𝒔, 𝒔𝟎 ∈ 𝑅3, written in the 
form of a dual vector 
$ = �𝒔, 𝒔𝟎�. 
Vector 𝒔 represents the direction of the screw axis. Screw pitch  

ℎ =
𝒔 ∙ 𝒔𝟎

𝒔 ∙ 𝒔  

is the numerical characteristic of the screw. Operation „⋅“ represents 
the scalar product of vectors. In special case, when ℎ = 0, such a 
screw is called a line vector or also Plücker coordinates of a line. 
The dual part 𝒔𝟎 represents the moment of the line to the origin of 
the coordinate system and is defined as the vector product of the 
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direction vector 𝒔 of the line and the position vector 𝒓 of any point 
on the line 
𝒔𝟎 = 𝒓 × 𝒔. 
The primary and dual parts of the line vector fulfil the orthogonality 
condition  
𝒔 ⋅ 𝒔𝟎 = 0. 
If the pitch ℎ = ∞, such a screw is called a couple, denoted as 
$ =  (𝟎, 𝒔), under the condition 𝒔 ≠ 𝟎. [2] A couple is thus a screw 
with an infinite pitch, which axis has a given direction, but with an 
arbitrary location in space.  
 
 

2.2 Operations with screws 
 
On the set of screw one can define the following operations: 
Let $ = �𝒔, 𝒔𝟎�, $1 = �𝒔𝟏, 𝒔𝟏𝟎�, $2 = �𝒔𝟐, 𝒔𝟐𝟎� be two arbitrary screw 
and let 𝜆 ∈ 𝑅. Then 
The sum of screws [3]  
$1 + $2 = �𝒔𝟏, 𝒔𝟏𝟎� + �𝒔𝟐, 𝒔𝟐𝟎� = �𝒔𝟏 + 𝒔𝟐, 𝒔𝟏𝟎 + 𝒔𝟐𝟎� 

The results of both these operations are screws, too.   

The product of a screw and a scalar [3] 
𝜆$ = 𝜆�𝒔, 𝒔𝟎� = �𝜆𝒔, 𝜆 𝒔𝟎� 

 
Alongside the mentioned operations, we define also the reciprocal 
product of screws. Let $1 =  �𝒔𝟏, 𝒔𝟏𝟎�, $2 = �𝒔𝟐, 𝒔𝟐𝟎� be arbitrary 
screws. Then the operation „∘“, defined as  
$1 ∘ $2 = �𝒔𝟏, 𝒔𝟏𝟎� ∘ �𝒔𝟐, 𝒔𝟐𝟎� = 𝒔𝟏 ∙ 𝒔𝟐𝟎 + 𝒔𝟐 ∙ 𝒔𝟏𝟎, (1) 
is called the reciprocal product of screws. [2] The matrix form of the 
reciprocal product is as   
$1 ∘ $2 = $1 Δ $2𝑇, 
where Δ is a 6x6 square matrix in the form 
Δ = �𝟎 𝑰

𝑰 𝟎�. (2) 
Matrix 𝑰 je a unit matrix, 𝟎 is the null matrix, both of dimension 
3x3. The result of the reciprocal product is a scalar. Two screws 
$1 = �𝒔𝟏, 𝒔𝟏𝟎�, $2 = �𝒔𝟐, 𝒔𝟐𝟎� are called reciprocal if  
$1 ∘ $2 = 0. 
Let us consider a screw in the form $ = (𝑙,𝑚,𝑛| 𝑝, 𝑞, 𝑟). The 
coordinates of the primary and the secondary part of the reciprocal 
screw $𝑟 = �𝑙,̅𝑚� ,𝑛�� �̅�, 𝑞�, �̅�) is obtained from the equation  
𝑝. 𝑙 ̅+ 𝑞.𝑚� + 𝑟.𝑛� + 𝑙. �̅� + 𝑚. 𝑞� + 𝑛. �̅� = 0. (3) 
Since we have six unknown coordinates and only one equation, 
there will exist ∞5 solutions. However, it makes sense to consider 
only linearly independent solutions, which reduces the number to 
five screws. In addition, for reciprocal screws are unit screws, i.e. 
their primary part is a unit vector. For a simpler interpretation of the 
found reciprocal screws, the reciprocity conditions of some pairs of 
the screws: 
 
 Two line vectors are reciprocal if and only if they lie in a plane. 
 Two couples are always reciprocal. 
 A line vector and a couple are reciprocal if and only if they are 

orthogonal. [2] 
 
 

2.3 Linear (in)dependency of screws 
 
Similarly as with vectors, there can be defined a linear 
dependency/independency of screws since they are dual vectors. 
The screws $1�𝒔𝟏, 𝒔𝟏𝟎�, $2 = �𝒔𝟐, 𝒔𝟐𝟎�,  … , $𝑛 = �𝒔𝒏, 𝒔𝒏𝟎� are said to 
be linearly independent if  

𝑐1$1 + 𝑐2$2 + ⋯+ 𝑐𝑛$𝑛
= 𝑐1�𝒔𝟏, 𝒔𝟏𝟎� + 𝑐2�𝒔𝟐, 𝒔𝟐𝟎� + ⋯+ 𝑐𝑛�𝒔𝒏, 𝒔𝒏𝟎�
= (𝟎,𝟎) 

and the real coefficients 𝑐1, 𝑐2, … , 𝑐𝑛 are all equal to zero. 
Otherwise, the screws are said to be linearly dependent. With 
respect to the fact that the screw as a dual vector has six coordinates, 
in the 3D space there exist at most six linearly independent screws. 
[2] When solving the problem of linear (in)dependency of the 
screws, we proceed in the same way as for vectors. 
 
 

3. SCREW THEORY IN MECHANICS 
 
Any change in the position of a rigid body in space can be achieved 
by rotating the body around an axis and then moving it in the 
direction of the given axis. When these two movements are carried 
out simultaneously, it is nothing more than the movement of the 
body along a path in the shape of a helix. [4] In this section, we 
define the motion and force screws, which allow us to connect the 
concept of screw from the previous section with the concepts of 
speed, force and moment of forces. We also focus on the respective 
kinematic pairs expressed by means of screws.  
 
 

3.1 Motion screw 
 
Let us consider a rigid body that rotates in the space with an angular 
velocity 𝜔 around the axis defined by the direction vector 𝒔. If we 
express the rotation axis as a line vector, then it is possible to 
describe the rotation of the body by an angular velocity line vector 
as 

𝜔$ =  ω�𝒔, 𝒔𝟎� = (𝝎,𝜔𝒔𝟎). (4) 
The dual part of the line vector (4) 
𝜔𝒔𝟎 = 𝜔(𝒓 × 𝒔) = 𝒓 × (𝜔𝒔) = 𝒓 × 𝝎 = 𝒗𝟎, 
represents the velocity of a point coincident with the origin. Thus, 
one can express the rotational motion of a rigid body by a motion 
screw, called twist, in the form 
𝜔$ = (𝝎,𝒗𝟎).  
If the rotation axis passes through the origin, the form of the twist is 
𝜔$ = (𝝎,𝟎) since the location vector 𝒓 is zero vector. [2] 
 
Let us consider the rigid body, that moves with a translational 
velocity 𝑣 in the direction of 𝒔. The vector of instantaneous 
translational velocity is given as 
𝒗 = 𝑣𝒔.  
During the translation, each point of the rigid body draws the same 
trajectory. This means, that if we move the vector 𝒔 parallel to its 
original placement, the velocity vector 𝒗 does not change. In Screw 
theory, this can be expressed as a couple $ =  (𝟎, 𝒔). Therefore, the 
translation of the rigid body as a state can be described by a screw 
𝑣$ = 𝑣(𝟎, 𝒔) = (𝟎,𝒗). (5) 
The translation can be regarded as a rotation around the axis 
orthogonal to 𝒔, that lies in infinity. [2] 
 
General motion then corresponds to a sum of translational and 
rotational motion. Expressed as screws using (4) and (5) we gain the 
motion state of the rigid body as  
𝜔$ + 𝑣$ = �𝝎,𝜔𝒔𝟎� + (𝟎, 𝑣𝒔) = (𝝎,𝜔𝒔𝟎 + 𝑣𝒔).  
The pitch of the twist   

ℎ =
𝑣
𝜔 
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is given as a ratio of translational velocity of the rigid body moving 
in the direction of the screw axis and the angular velocity of the 
body rotating around this axis. [5] 
 
 

3.2 Force screw  
 
Similarly, we can unify the force and the moment of forces into one 
common expression employing the screw. 
 
Let the force 𝑓acts on a rigid body in the direction of vector 𝒔, then 
the force vector can be written in the form of product 𝑓𝒔. 
Simultaneously, force 𝑓 causes the presence of the moment of forces 
𝑴𝟎 about the origin in the rigid body such as 
𝑴𝟎 = 𝒓 × 𝒇 = 𝒓 × 𝑓𝒔 = 𝑓(𝒓 × 𝒔) = 𝑓𝒔𝟎.  
The force acting on a body in the direction of 𝒔 is given as a screw 
(𝒇,𝑴𝟎) = �𝑓𝒔, 𝑓𝒔𝟎� = 𝑓�𝒔, 𝒔𝟎� = 𝑓$.  
Now let us consider that there are two parallel equally large, 
oppositely oriented forces 𝒇1 and 𝒇2 acting on a body. The effect of 
these forces creates a moment of the pair of forces 𝑴, which acts in 
the direction of the vector 𝒔 perpendicular to the plane of the acting 
forces 𝒇1,𝒇2. The action of a pair of forces can be written as the 
screw 𝑀(𝟎, 𝒔). 
 
If a system of forces and moments of forces acts on a rigid body, we 
can write it down as the action of the resulting force and the 
resulting moment of forces using a wrench in the form 

𝑓$ =  𝑓�𝒔, 𝒔𝟎� = �𝒇,𝑴𝟎� = 𝑓�𝒔, 𝒔𝟎 + ℎ𝑓𝒔�,  
where ℎ𝑓 is the wrench pitch – a ratio of the moment of the forces 
acting in the direction of the screw and resulting force. [5] 
 
 

3.3 Kinematics of pairs 
 
To determine the mobility of a mechanism using screws, we use the 
reciprocal product of screws (1). The reciprocal product of the force 
and motion screw represents the instantaneous work due to the force 
acting on the moving body. However, the coupling forces (moments 
of forces) do not induce any work when acting on the body, i.e. the 
reciprocal product of such a screw with a motion screw is zero. 
Regardless of the magnitude of the force acting in this way, the state 
of motion of the body does not change. If the screw $ determines the 
free movement of the body, then the reciprocal screw $𝑟 represents 
the constraint (force or moment) with respect to the removed degree 
of freedom. Conversely, if $ represents a constraint, then $𝑟 
represents the movement that the constraint allows the body. [2] 
 
Let us now consider a rigid body that is connected by a geometric 
constraint to a mechanism, and this constraint removes j degrees of 
freedom from the body, j<6. The set of all linearly independent 
motion screws describing the movements that the given constraint 
allows for the body is called the motion system of the body 𝑆𝑚. The 
set of all linearly independent screws that are simultaneously 
reciprocal to all screws of the motion system 𝑆𝑚 is called the 
reciprocal force system 𝑆𝑅. It is true that the sum of free movements 
and constraints is always six, therefore  
dim(𝑆𝑚) + dim(𝑆𝑅) = 6.  
To each reciprocal force system 𝑆𝑅 we can assign a constrained 
motion system 𝑆𝑚𝐶 , which contains in a screw expression the 
movements limited by the given geometric constraint. For the 
coupling motion screws bound to the coupling force screws, the 
following holds: If the force screw is $𝑟 = (𝒔, 𝒔𝟎 + ℎ𝒔), then the 
motion screw expressing the motion limited by the $𝑟 constraint is 
given by [5]  

$𝑚𝐶 = �𝒔, 𝒔𝟎 + 1
ℎ
𝒔�.  

In the following section, we will describe the individual types of 
body constraints in space using motion screws and constraints that 
are in the form of reciprocal screws to them. For simplicity, we will 
only list constraints with one degree of freedom. 
 
Let us consider two members connected by a rotational joint. We 
define a cartesian coordinate system according to fig. 1. 
 

 
Fig. 1. Cartesian coordinate system for the rotational joint. [5] 

The x-axis corresponds to the joint axis. Then the motion screw 
expressing the free motion is given by 

$ =  (1, 0, 0| 0, 0, 0 ).  
For two members connected by a prismatic joint, we define the 
cartesian coordinate system according to fig. 2. The direction of 
displacement is defined in the direction of the x-axis. Then the 
motion screw expressing the free motion is given by  

$ =  (0, 0, 0| 1, 0, 0 ).  

 
Fig. 2. Cartesian coordinate system for the prismatic joint. [5] 

Now let us consider two members connected by a screw connection 
with a screw pitch h. We define the cartesian coordinate system 
according to fig. 3. The x-axis corresponds to the screw axis. Then 
the motion screw expressing the free movement is given by 

$ =  (1, 0, 0| ℎ, 0, 0 ).   

 
Fig. 3. Cartesian coordinate system for a helical joint. [5] 
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Other joints can be expressed as combination of the mentioned 
joints. Therefore, their screw expressions are combinations of the 
defined screws. 
 
 

4. KINEMATIC ANALYSIS 
 
An integral part of the analysis of the mechanism is its kinematic 
model, which is necessary both for the solution of its dynamics, as 
well as for its control and simulation. The task of kinematic analysis 
is to define the course of the position and orientation of the end 
effector over time, its speed and acceleration, or other higher 
derivatives of the position. Within kinematics, we distinguish four 
basic tasks:  
 
 direct problem for location,  
 inverse problem for position,  
 direct problem for velocities,  
 inverse problem for velocities. 
 
 

4.1 The velocity equation 
 
Let us consider the open kinematic chain that consists of the 
members, denoted as  𝑗, 𝑗 + 1, 𝑗 + 2, ..., 𝑚− 2, 𝑚− 1, 𝑚. These 
members are joint together with helical pair where $𝑘+1𝑘  denotes 
the helical pair between members 𝑘 and 𝑘 + 1. Then the velocity of 
member 𝑚 with respect to member 𝑗 is given as   

𝑽𝒎 =𝒋 𝜔𝑗,𝑗+1 $𝑗+1𝑗 + 𝜔𝑗+1,𝑗+2 $𝑗+2𝑗+1 + ⋯+  𝜔𝑚−1,𝑚 $𝑚𝑚−1 .  
 (6) 
If the 𝑗-th member is the base of the serial robot and the 𝑚-th 
member is the end effector, one gains the equation for relative 
velocity of the end effector in the screw form. [3] At the same time, 
we get the solution of the direct tasks for speeds. The resulting 
velocity is found based on one configuration of the robot and the 
relative velocities of its members. [6] Writing the equation (6) in the 
matrix form  

� 𝑽𝒏𝟎 �
𝑻

= 𝑱.𝛀, (7) 
where 

𝑱 = �� $10 �𝑇 � $21 �𝑇 ⋯ � $𝑛𝑛−1 �𝑇� (8) 

is the Jacobi matrix (Jacobian) and  

𝛀 = �ω0,1 ω1,2 ω2,3 …ωn−1,n�
T

 (9) 
the vector of relative velocities, we can find the solution of the 
inverse problem for velocities, as well. Multiplying (7) from left 
with an inverse 𝑱−1 leads to the vector of relative velocities (9) in 
the form 

𝛀 = 𝑱−𝟏� 𝑽𝒏𝟎 �
𝑻
.  

 
In the case of a parallel mechanism, the relative velocity of the 
moving platform as the end effector of the mechanism must be the 
same, regardless of the limb that is used to get the equation (6). The 
main problem lies within the fact that not all the kinematic pairs in 
the parallel mechanism are controlled. The solution is to eliminate 
the passive kinematic pairs in (6) by reciprocal multiplication. 
Repeating the process of multiplying (6) with the screw reciprocal 
simultaneously to all the screws of the passive joints in the limb 
through all the limbs of the mechanism leads to a system of 
equations, given in matrix form  
𝑨𝚫𝑽𝒑 = 𝑩𝛀𝒂, (10) 
where  
𝑨 = �$𝟏𝑅   $𝟐𝑅  $𝟑𝑅   $4𝑅   $5𝑅  $6𝑅� (11) 

is the matrix of screws reciprocal to screws of passive joints in 
respective limbs. 𝚫 is the operator of polarity defined in (2),  
𝑩 = 𝑑𝑖𝑎𝑔�$1𝑅 ∘ $𝑎1, $2𝑅 ∘ $𝑎2, $3𝑅 ∘ $𝑎3, $4𝑅 ∘ $𝑎4, $5𝑅 ∘ $𝑎5, $6𝑅 ∘
$𝑎6� (12) 
is the diagonal matric of coefficients and   

𝛀𝒂 = �𝜔𝑎1, 𝜔𝑎2, 𝜔𝑎3, 𝜔𝑎4, 𝜔𝑎5, 𝜔𝑎6�
𝑇

 (13) 
is the vector of relative velocities of the actuated kinematic pairs in 
respective limbs (here, (11), (12), (13) are expressed as for the 
parallel mechanism with six actuators). [3, 7, 8] If there exists the 
inverse of the matrix 𝑨𝚫, then multiplying (10) with (𝑨𝚫)−𝟏 we 
obtain the solution of the direct problem for velocities. On the other 
hand, if there exists the inverse of the matrix 𝑩, then multiplying 
(10) with 𝑩−𝟏 provides us with the solution of the inverse problem 
for velocities.  
 
 

4.2 Singularities of a mechanism 
 
Singularities of the serial mechanisms are identified via the Jacobi 
matrix (8) from the velocity equation (7). The serial mechanism is in 
a singular position when the Jacobi matrix is singular  
det( 𝑱 ) = 0,  
or 
det( 𝑱𝑻𝑱) = 0  
in case the matrix 𝑱 is not square. For parallel mechanisms we 
determine the singular positions from (10). Three types of 
singularities can be distinguished  
 
 1st

 2
 type singularity - matrix 𝐁 is singular, 

nd

 3
 type singularity - matrix 𝑨𝚫 is singular, 

rd

 

 type singularity - both matrices 𝑨𝚫 and 𝐁 are singular. [3, 
7] 

 
5. KINEMATIC ANALYSIS OF THE 3 DOF PLANAR 

PARALLEL MECHANISM 
 
Let us consider the planar parallel mechanism where the moving 
platform is connected to the base by three serial chains of type RTR 
(fig. 4). 

 
Fig. 4. The 3-RTR planar parallel mechanism. 

The position of the coordinate system (fig. 5) is as follows: the 
mechanism lies in the plane 𝑥𝑧, the axis 𝑦 is perpendicular to the 𝑥𝑧 
plane, oriented in the sense of right-hand rule. 

 

𝐴0 𝐵0 𝐶0 

𝐴1 

𝐴2 

𝐵1 

𝐵2 

𝐶1 

𝐶2 
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The angles are depicted in fig. 5. The lengths of respective members 
are 

|𝐴0𝐴1| = 𝐿1 |𝐴0𝐴2| = 𝐿2 |𝐴0𝐵0| = 𝐿3
|𝐵0𝐵1| = 𝐿4 |𝐵0𝐵2| = 𝐿5 |𝐵0𝐶0| = 𝐿6
|𝐶0𝐶1| = 𝐿7 |𝐶0𝐶2| = 𝐿8

 

The mechanism has 3 degrees of freedom - a rotation around the 
axis parallel to the axis 𝑦, a translation in the direction of the axis 𝑥 
and a translation in the direction the axis 𝑧. According to this, the 
twist of the moving platform is of the form 

$𝑚 =  �0,𝜔𝑦, 0| 𝑣𝑥, 0, 𝑣𝑧 �.  
Velocity of the moving platform is then expressed by (6) as 
�0,𝜔𝑦 , 0| 𝑣𝑥, 0,𝑣𝑧 � = 𝜔𝐴0$𝐴0 + 𝑣𝐴1$𝐴1 + 𝜔𝐴2$𝐴2 ,
�0,𝜔𝑦, 0| 𝑣𝑥, 0, 𝑣𝑧 � = 𝜔𝐵0$𝐵0 + 𝑣𝐵1$𝐵1 + 𝜔𝐵2$𝐵2 ,
�0,𝜔𝑦 , 0| 𝑣𝑥, 0, 𝑣𝑧 � = 𝜔𝐶0$𝐶0 + 𝑣𝐶1$𝐶1 + 𝜔𝐶2$𝐶2 .

 (14) 

  
Now we find the screws corresponding to the joints in the limbs. 
The revolute pairs are expressed as line vectors and the prismatic 
pairs are expressed as couples. The screws of the kinematic pairs are 
presented in tab. 1. 
 
Tab. 1. The screws of the kinematic pairs in the mechanism. 

 Screws 

Chain 
𝐴0𝐴1𝐴2 

$𝐴0 = (0 1 0|0 0 0), 
$𝐴1 = (0 0 0|𝐿1 cos𝛼 , 0, 𝐿1 sin𝛼), 
$𝐴2 = (0 1 0|−𝐿2 sin𝛼 , 0, 𝐿2 cos𝛼). 

Chain 
𝐵0𝐵1𝐵2 

$𝐵0 = (0 1 0|0 0 𝐿3), 
$𝐵1 = (0 0 0|𝐿4 cos𝛽 , 0, 𝐿4 sin𝛽), 
$𝐵2 = (0 1 0|−𝐿5 sin𝛽 , 0, 𝐿3 + 𝐿5 cos𝛽). 

Chain 
𝐶0𝐶1𝐶2 

$𝐶0 = (0 1 0|0, 0, 𝐿3 + 𝐿6), 
$𝐶1 = (0 0 0|𝐿7 cos 𝛾 , 0, 𝐿7 sin 𝛾), 

$𝐶2
= (0 1 0|−𝐿8 sin𝛽 , 0, 𝐿3 + 𝐿6 + 𝐿8 cos 𝛾). 

 
Three degrees of freedom assume the presence of three actuated 
kinematic pairs in the mechanism, one in each limb.  
First, let us consider the location of the actuators in each chain as 
follows:  
 
 In the chain 𝐴0𝐴1𝐴2, it is the prismatic pair 𝐴1. 
 In the chain 𝐵0𝐵1𝐵2, it is the revolute pair 𝐵0. 
 In the chain 𝐶0𝐶1𝐶2, it is the prismatic pair 𝐶1. 
 
Now we must find the screws reciprocal to passive screws in the 
serial chains to transform (14) into the form of the input-output 

equation (10). For this purpose, we use (3) what leads to a system of 
two equations with six unknows for each chain. In the 𝐴0𝐴1𝐴2 
chain, it is  
(t cos𝛼 ,𝑢, 𝑡 sin𝛼 | 𝑣, 0,𝑤 ). (15) 
Writing the reciprocal screw (15) as a sum of screws for separate 
parameters,  
𝑡 ⋅ (cos𝛼 , 0, sin𝛼 | 0, 0, 0 ) + 𝑢 ⋅ (0, 1,0| 0, 0, 0) + 𝑣 ⋅
(0, 0,0| 1, 0, 0 ) + 𝑤 ⋅ (0, 0,0| 0, 0, 1 )  
we omit those screws that are reciprocal to every screw in the chain, 
the active included. The screw reciprocal to passive pairs in the 
𝐴0𝐴1𝐴2 chain is 
(cos𝛼 , 0, sin𝛼 | 0, 0, 0 ). (16) 
In the same manner, we would find the reciprocal screw in the 
𝐵0𝐵1𝐵2 chain 
(sin𝛽 , 0,− cos𝛽 | 0, 𝐿5 + 𝐿3 cos𝛽 , 0 ) (17) 
and in the 𝐶0𝐶1𝐶2 chain 
(cos 𝛾 , 0, sin 𝛾 | 0,−(𝐿3 + 𝐿6) sin 𝛾 , 0 ). (18) 
Multiplying (14) with reciprocal screws in the order – the first 
equation of (14) by (16), the second equation by (17) and the third 
one by (18), we obtain the equation (10) in the form 

�
0 cos𝛼 sin𝛼

𝐿5 + 𝐿3 cos𝛽 sin𝛽 − cos𝛽
−(𝐿3 + 𝐿6) sin 𝛾 cos 𝛾 sin 𝛾

��
𝜔𝑦
𝑣𝑥
𝑣𝑧
� =

                                                        =  �
𝐿1 0 0
0 𝐿5 0
0 0 𝐿7

��
𝑣𝐴1
𝜔𝐵0
𝑣𝐶1

�. (19) 

From (19) after multiplication with the inverse of the matrix of 
coefficients on the left-hand side, we gain the velocity of the moving 
platform for the instantaneous configuration and velocities of the 
actuated pairs. On the other hand, multiplying (19) with the inverse 
of the matrix of coefficients on the right-hand side allows us to solve 
the inverse problem for velocities, i.e. the velocities of the actuated 
kinematic pairs   knowing the velocity of the moving platform and 
the configuration of the mechanism at that moment.  
 
Furthermore, we use equation (19) to identify singular positions of 
the parallel mechanism.  The mechanism is in a singular position of 
the 1st

�
𝐿1 0 0
0 𝐿5 0
0 0 𝐿7

� = 0.  

 type when  

Since the lengths 𝐿1, 𝐿5, 𝐿7 ≠ 0, the mechanism cannot reach the 1st 
type singular position. This means that the moving platform is not 
able to move when the actuators are stopped. The mechanism is in a 
singular position of the 2nd

�
0 cos𝛼 sin𝛼

𝐿5 + 𝐿3 cos𝛽 sin𝛽 − cos𝛽
−(𝐿3 + 𝐿6) sin 𝛾 cos 𝛾 sin 𝛾

� = 0,  

 type when 

or 
𝐿5 sin(𝛼 − 𝛾) + 𝐿6 sin 𝛾 cos(𝛽 − 𝛼) + 𝐿3 sin𝛼 cos(𝛽 − 𝛾) = 0.
 (20) 
Reaching the 2nd

Now we model the configuration where the actuators are located 
symmetrically, as follows: 

 type singularity position requires such 
configuration when (20) will be fulfilled.  

 
 In chain 𝐴0𝐴1𝐴2, it is the revolute pair 𝐴0. 
 In chain 𝐵0𝐵1𝐵2, it is the revolute pair 𝐵0. 
 In chain 𝐶0𝐶1𝐶2, it is the revolute pair 𝐶0. 

 

 

𝐴0 𝐵0 𝐶0 

𝐴1 

𝐴2 

𝐵1 

𝐵2 

𝐶1 

𝐶2 𝑧 

𝑥 

𝛼 𝛽 𝛾 

Fig. 5. The coordinate system of the mechanism. 
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Here, the screw reciprocal to passive pairs in the 𝐴0𝐴1𝐴2 chain is 
(− sin𝛼 , 0, cos𝛼 | 0,−𝐿2, 0 ). (21) 
For the chain 𝐵0𝐵1𝐵2, it is the screw 
(sin𝛽 , 0,− cos𝛽 | 0, 𝐿5 + 𝐿3 cos𝛽 , 0 ) (22) 
and for the chain 𝐶0𝐶1𝐶2, it is  
(sin 𝛾 , 0,− cos 𝛾 | 0, 𝐿8 + (𝐿3 + 𝐿6) cos 𝛾 , 0 ). (23) 
Again, we multiply the system (14) with reciprocal screws in the 
order - the first equation of (14) by (21), the second one by (22) and 
the third one by (23). This way we obtain the equation (10) in the 
form 

�
𝐿2 sin𝛼 −cos𝛼

𝐿5 + 𝐿3 cos𝛽 sin𝛽 − cos𝛽
𝐿8 + (𝐿3 + 𝐿6) cos 𝛾 sin 𝛾 −cos 𝛾

��
𝜔𝑦
𝑣𝑥
𝑣𝑧
� =           

                  = �
𝐿2 0 0
0 𝐿5 + 𝐿3 cos𝛽 0
0 0 𝐿8 + (𝐿3 + 𝐿6) cos 𝛾

��
𝑣𝐴1
𝜔𝐵0
𝑣𝐶1

�. 

 
The mechanism is in a singular position of the 1st

�
𝐿2 0 0
0 𝐿5 + 𝐿3 cos𝛽 0
0 0 𝐿8 + (𝐿3 + 𝐿6) cos 𝛾

� = 0.  (24) 

 type when  

Even if 𝛽 = 𝛾 = 𝜋
2
, the determinant (24) will not be equal to 0 

because lengths 𝐿2, 𝐿5, 𝐿8 ≠ 0. Therefore, the mechanism will never 
reach the 1st type singular position. However, the mechanism can 
reach the singular position of the 2nd

�
𝐿2 sin𝛼 −cos𝛼

𝐿5 + 𝐿3 cos𝛽 sin𝛽 − cos𝛽
𝐿8 + (𝐿3 + 𝐿6) cos 𝛾 sin 𝛾 −cos 𝛾

�=0. 

 type when 𝛼 = 𝛽 = 𝛾. Then 

This can be prevented if we do not have the base and the moving 
platform of the same length. Despite this, the mechanism can be in a 
singular position when 𝛼 = 𝛽 = 𝛾 = 0. 
 
Again, we consider the configuration with symmetrical location of 
the actuators, this time in the prismatic pairs. The screws reciprocal 
to passive screws in the limbs are already known for the limb 
𝐴0𝐴1𝐴2 and 𝐶0𝐶1𝐶2 – these are the screws (16) and (18), 
respectively. The reciprocal screw for the limb 𝐵0𝐵1𝐵2 is of the 
form 
(cos𝛽 , 0, sin𝛽 | 0,−𝐿3 sin𝛽 , 0 ).    
Applying the reciprocal screws on the (14), we obtain the equation 

�
0 cos𝛼 sin𝛼

−𝐿3 sin𝛽 cos𝛽 sin𝛽
−(𝐿3 + 𝐿6) sin 𝛾 cos 𝛾 sin 𝛾

��
𝜔𝑦
𝑣𝑥
𝑣𝑧
� = �

𝐿1 0 0
0 𝐿4 0
0 0 𝐿7

��
𝑣𝐴1
𝑣𝐵1
𝑣𝐶1

�.   

The mechanism will not reach the 1st type singular position since the 
lengths 𝐿2, 𝐿4, 𝐿8 ≠ 0. Also, it will not reach the 2nd

 

 type singular 
position when the angles 𝛼,𝛽, 𝛾 do not have the same value.  

 
6. CONCLUSION 

 
In the paper, we summarised the basic mathematical concepts of the 
Screw theory. We have shown the connection of this mathematical 
apparatus with mechanics and presented a known algorithm for 
finding an input-output velocity equation for parallel mechanisms. 
Subsequently, we applied it in solving the kinematic analysis of a 
planar parallel mechanism with three limbs of the RTR type. We 
have found the input-output form of the equation for the velocities 
and conditions under which the mechanism will reach a singular 
position inside its working space. 
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